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Abstract o
Continuous time Markov chains are commonly used in system s
performance modeling. Increasing system complexity and non-
Markovian behavior can drastically increase the size of a Markov o
model's state space. Accordingly, approximation techniques have
been introduced to reduce the resources needed to solve Markov -y
chain models. In this paper we discuss a method for automatically
deriving symbolic solutions of Markov chains. Symbolic solutions
should provide insight when attempting to evaluate the validity of

both Markov models and approximation techniques for their S
solution. S

1. Introduction -

Continuous time Markov chains (CTMC) are commonly used tools in computer
systems modeling. CTMC have been used to model program beb;wior.’ systém
performance,23 gystem reliability. 45 and system availability,® and also in the .
combined evaluation of performance and reliability.”.® Although the limitation of -
exponentially distributed state occupancy times, as implied by a homogeneous CTMC,
appears to be restrictive, it is possible to use the Coxian method of stages to allow
arbitrary phase type distributions. 3.9.10.11

In general, once a Markov chain model of a gystem has been constructed, there
are several solution ‘methods available. Figure 1 summarizes these methods and

typical modeling packages that employ themn. The Markov model of a system can be
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SN solved using integral equations, formally taking the convolution of the probability of
sotering the .ﬁte with the probability of remaining in it.12:13 Alternatively, the Markov
cbain can be converted to a coupled set of homogeneous differential equations.3 This
set of equations can be solved using either numerical techniques or Laplace
transforms. A third solution method is simulation. As an introduction, we will briefly
discuss some of the advantages and disadvantages of each of these methods.

: " Simulation can be more realistic than analytic models. Many types of complex

. systems, particularly those for which independence assurnptions are invalid, can be

. directly modeled using simulation However simulation model: can have high

. development costs and may require large amounts of computer time to obtain

- statistically significant results. Therefore, the low cost alternative of analytic modeling

can be attractive, even if spproximating assumptions are necessary. If a range of

systems must be compared. similar systems must often be simulated individually.

Analytic modeling may permit the comparison of such systems without repeated
simulation.

The most common analytic approach is to represent the Markov cbain as'a set of

coupled differential equations. Each equation describes the flow "balance” conditions m

s corresponding state of the chain, ie. the instantaneous rate of change in the

probability of being in a state is equal to the rate of arrival into the state less the rate

: of departure from the state at that instant. This set of equations can be solved using
- either Laplace transforms or numerical techniques. Using Laplace transforms for large
3 systems (either numerically or symbolically) may require finding the roots of many
large polynomials, @ computationally expensive task. One advantage of numerical
techniques is that they can be easily extended to evaluate non-homogeneous Markov ) vy
chains. However, if the system is stiff, i.e. if two or more transition rates out of any o 4
single state differ greatly in magnitude, special care will be needed to get an accurate x 2’

- solution. '..'~,~1




Sets of integral equations are similar to coupled differential equations.12 Integral
equations provide a basis for modeling both semi-Markov processes and non-
hormogeneous Markov chains. Integral equations for Markov chain state probabilities
will also provide the basis for the closed form solution techniques discussed later in
this paper.

One issue we do not address in detail is the solution of cyclic Markov chains. In the
context of modeling fault-tolerant systems, we are restricting our attention to non-
repairable systems. Such systems can generally be represented by Markov chains
without cycles. If cycles are present in the rnodel, all the solution methods discussed
are of diminished utility. The simulation of a cyclic Markov chain may be more
expensive (for the same degree of accuracy) than for an acyclic chain of the same size,
as the number of possible. Pat.hs through the cbain are no longer finite. }f an analytic

solution of a cyclic Markov chain is desired, numerical solution of systems of either

differential or integral equations is usually the recommended approach.
Approximation techniques may still allow us to obtain a symbolic solution, albeit an

inexact one.

To illustrate the use of Markov models, we consider an example from reliabili.ty
modeling.} Figure 2 depicts the transition diagram of a Markov chain representing a
3-component parallel redundant system. The individual components have lifetimes
that are independent and exponentially distributed with parameter A. When an
individua! component fails, a reconfiguration process with rate parameter § begins.
This process is guaranteed to reconfigure the system as long as a second fault does not
occur before the reconfiguration is completed. The reliability of the system at time ¢,
denoted R(t), is given by 1 - Piprocess in state F, or F, at time ¢}.

A package employing traditional (i.e. numerical) solution techniques would input
numeric values for the parameters of the model (bere § and A) and would solve the

system numerically for { less than some fired value. To determine the actual behavior
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of the system as & function of a parameter other than ¢ would require many runs of

R AN

such a program.
In this paper, we discuss a method for the derivation of state probabilities of an

acyclic Markov chain in a symbolic fashion. Closed form results (that previously could
be obtained only by hand) give greater insight into actual system behavior by allowing
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us to easily study the relationship between input parameters and the resulting state
probability distributions. Our approach is based on the use of integral equations. 1t is
computationally similar to using Laplace transforms to solve systems of coupled ODE's.
The program implementing the algorithm discussed in the paper is called ACE (4cyclic
Markov Chain Zvaluator). The solution of cyclic chains (which presents additional
difficulties) is omitted from our discussion.
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In section 2, we describe our method which is partially inspired by the program
SPADE. 15 In gection 3 we describe our program’s implementation. Some examples of

the use of ACE are given in section 4.

3 2 Basxic Approach
- Consider an acyclic continuous time Markov Cbain. Let the states be numbered
i 1.2....N. let A;)q.....Ax be the transition rate variables. The transition rate from state
X § to state j is denoted by gy. where gy can be expressed as a linear sum of transition

rate varisbles, i.e,
E 9 '-‘-tﬁ CiMe € (i E(—=,%). (1)
N =]
T Further let g;=3 g denote the total exit rate from state {.
]
,_!_4 For any state i of an acyclic Markov chain, let F;(t) be the probability that the
: . system is in state { at time £. For any state £, F(f) may be written as a polynomial of _
:;:f the form BN
. it
- R
- . . '- :':1
S )
. s
.
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Fi(z) = );, ™2 agezt) @
The fact that the state probability distributions are of this form is easily derived. First
observe that the initial state(s) probebility(ies) has (have) this form. The probability of
- being in (non-initial) state { at time ¢ can be written as: |

F(t)= .;. Y Py(z)gne #E gz (3)
0 jeJ(i)
where J(i) is the set of states with a transition leading to state i. By induction, it is
l easy to show that. if every Fj(z) has the form (2), then so does any F;(z) derived using
Q).

We now derive the equations needed to calculate the constants of equation (2) for
any state of an actual acyclic Markov chain. Let S(i) be the set of poles of the
laplace-Stieltjes Transform of Pi(t). ie. the set of the 7y4's of (2). Let us rename
7" & ~g; and define S(J(i)) & ’&‘,S(j). Setting N(5) = {S()|. we can write

i S{) = tranrsz - - . . 7vy)}- Ui we number the poles then Pj(t) may be written as:
N e z.g:z) |
Pi(t) = f e™ [ ) ajutt) , 0
i=3 k=0 .
. L(j.1) is the maximum power of ¢ associated with pole 73 in P;(t) such that ag, »0.
: H N(5) > 1, it is easy to show using en inductive proof that, for any pole g,
s (Byugn# 0) => Vk<L(jl) (au * 0) (5)
- Y N(f)=1. then F,(t) is of the form at*e™. This corresponds to the case where there is 3
‘ anly ane directed path from the original state to state j and all the transition rates 1
along this path are all equal, i.e. gy==y. Only in this case is the implication in (5) not "_-:_:f_'.

) satisfied. Thus P,(t) may be written _ , ‘4

. R
‘.: ‘ ';' ‘;‘1
) ryd . Yy
i P)= T 8 feme§0an zkqylerelar ® T
e Jel(i) I=) '{ k=0 I #
. But, especially when the Py(t)'s have common poles, i.e. when |S(J(i))] < ; ;‘ )iS(j)l . T
AN &/ {8 ——
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this expression reduces to

¢

) L(Ll)

Pi(t) = e7* 1 = # Gy zk)]e7 (t-%)dz
' 7032(;'(&)){ [jegzu) lzg (713 =7) (gg.:o 9% %u=)]

¢ L)
= 765%(3')) { igo arpzte et =)dz (7
where
- N(§) )
Qqyk g je?(i) [g] 1(7“ = 9)95 S5tk - 7€S(J('&)) (8)
and
Li(y) = ,rg,a(:‘.t)l Loyl rva=7. (9)

Moving the integral inside the summation we obtain

t

P(t)= Y eTta>, [ zke(r7')Ear (10)
yeS(J(5)) Ig: a.,*{

The resolution of ttns integral depends on whether ¥ differs from y*. If y=7°, then,

tk+l
(k+1) °
Otherwise, when S=(y—7*), integration by parts yields

¢ t
[ zkerr¥Bdz = [ 2tdr = (11)
0 0

t
kt gkt k!
[tesas =¢s‘[‘§(-1)‘ Eopr sl t DM g @

We can now write the equation for P;(t)

) k! k-t
t( ) S%(i))i (r") :f [ 1#(120( ) (k -l)! S;.n 7

- k! LQ*) - k4t
+ G,*("l)kﬂ SE+1 37.‘] + l(ﬁo) ggo e7% Qyo x W; . (13)

We note that

S(i)=0'lvSsU(i)) (14)
and define

. . "

. e LI - H

LY AT "," "',
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L) ifn=7*
Ld) =1L (n)+1 ify=y*and y*€S(J (1)) (15)
0 ify,=7* and y*@S(J (1))
From (13) note that, if v = k-1, we have

) o k! tk
‘f "’*[,.g"‘)‘ &= EGE

&=0

) k! )
- ~ 1)k : -3
= I;go "'7.&[‘20( 1) u! x Sk+1-u 4

L(y) ) k! 1
= ~ (_1Yk !
= ugo t”:g‘ °7.k( 1) - u! X Sk+1~u
It we write P,(t) as
N{i) )
Pi(t) = ‘él et Lﬁ a.'.,“t‘ (16)

k=0.
then

Gy =I:§:' (-1 Tix 2=

w! ST+l-u )

1f y,#7*, we have

1) ' i '
e kg~ . T 1 =
a"'t-l:gk( V™ 8 (=7 k=0,...Li(7) an

It y» €5(/(¢)) then

. Nfi) ) [ oy

TS & 0 D (=7 4
Otbervwise, if y*€S(/(i)). .
' ae X . ‘
Cpopsy = -(;z‘;ﬁ- k=0.....L¢(7‘) (19) _;..\_i
With these equations, we can easily compute the coefficients of the polynomials in ¢ - 1
o

that multiply the exponentials in the state probability expressions. :

--------
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L e LT VeV e ®a




e

S Implementation

In this section we outline the procedure used by the ACE program to compute
state probability expressions for an acyclic Markov Chain. Techniques for chains with
eycles are more complez, requiring either the symbolic solution of a set of equations or
some form of approximation. We aiso briefly discuss the operation and user interface

of ACE.

‘The ACE procedure is detailed in the Appendix; we briefly outline it here. First the
states are sorted according to the partial order induced by the transitions. For state
1, the probability expression is computed by first determining all the poles of states
that have transitions leading to state i. If the pole associated with state i’s outgoing
trensition is not in the incoming set, coefficients for the polynomials multiplying the
incoming exponential terms are computed using equation (17). The new pole's
polynomial multiplier is a c;:nltant computed using equation (18). If the outgoing pole
is also in the set of incoming poles, the degree of its polynomial will be incremented.
The new coefficients for the incremented polynomia! can be computed using equation
(19).

ACE is being developed as the first stage of a testbed for aggregnti'oh techniques.
Two versions are currently being implemented. The first version supports an unlimited
number of symbolic variables but generates answers that are symbolic only in the
poies (the powers of the exponential terms). The coefficients of the polynomials in ¢
that multiply the exponentials are numeric. The second version of ACE is fully
symbolic in one variable and numeric in other variables, i.e. the coefficients of the
polynomials in ¢ that multiply the exponentials have both numeric and symbolic parts.
This allows us to conduct a parametric sensitivity analysis in a fully symbolic fashion.
Eventually these two metbods will be combined yielding completely symbolic poles and
coefficients that are fully symbolic in st least one variable.




..............................................

Several problems have arisen in constructing the ACE package. When computing
symbolic coefficients, the size of the coefficients grows linearly with the number of
symbolic variables used along all paths to the state. The coefficients rapidly reach an
unmanageable size, even for a small chain. Restricting the lengths of the paths
through the chain would greatly reduce the package's utility, particularly for chains

that are "long” (e.g. simple death processes). Instead, we restrict the number of

symbolic variables that are maintained in & given run of the program. All variables not
treated symbolically are merged numerically. }f poles are still maintained in a fully
symbolic fashion, care must be taken to correctly merge the numeric values of . 4
symbolically different, numerically identical poles. e
Further efforts, include the construction of a "user-friendly" interface and the
eddition of a block definition and solution facility. The user will be able to define o]
blocks of states with ﬁxe;l ‘entry and exit points. The blocks could be evaluated by :
direct insertion of their states into the chain. Alternatively, the block could be solved ‘ 4
in isolation using symbolic or numerical approximation methods. This capability —--4
should further facilitate the use of ACE in evaluating aggregation methods. s
4 Examples and Conclusions A ]
In this section we demonstrate the use of ACE-like symbolic computation. We ! J
begin by symbolically solving the example given in Figure 2 using the method described
in sections 2 and 3. We then apply a simple aggregation technique to the chain and re-
solve the system. We give examples that demonstrate the utility of a symbolic solution ST
for bounding, sensitivity analysis, and comparison of sggregation techniques. <
4.1 Exact Solution of 3-Component System o]
Given the chain shown in Figure 2, we follow the algorithm outline given in section oy
8. We first observe that the only 7 for the probability distribution of state 3 is ~3\. As j
-
SRS
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state 3 has no parent the constant a'; g=1. Accordingly we can write:

Py(t) = o=, (20)
We can continue following the algorithm sketch and derive the following equations for

the functioning states:

(21)

Pg(t) = Asfﬁ g™ - %B-(a"’)‘ + 3e~2NM

= BN sy, BA __(aaesx
)8 *trs"®

6A 8AS

B = vy
ast - 6AS

(A=8)(en=d) °

(22)
(23)
Y

- _—_-__g'(a")‘ + i
(A=6)(A+6) A=S

BAS . e ¥ .
g e e

For the state that corresponds to failure due to exhaustion of components we can

Py(t) = e M (29)

write:
_ 8 BAES N 34
Frt)= - st ™ t e o Tt (@9)
(] O 3 82
Y oD n+B) (2B © I vo 2 B (@ +6)(A+0)

For the state that corresponds to a coverage failure we can write:

_ 2 2\8 12 o . 3
Fri)= =+ ooy -8)(@r+d) © * A=
8A% e o _2A AS
-8y (A+8)(2n=0) © * s T Do) (hr)
We note that the reliability of the 3-component system is given by

e N (28)

R(t)=1=~(Pp(t) + Pp(t)) (27)
To derive the information contained in this symbolic reliability expression, even a
highly flexible conventional reliability evaluation package would require several runs
for different parameter values. For example, to see the effect of the fault-handling
rate we consider the reliability expression as a function of deita. Fixing A=10~4

........................
..............

..............
------
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failure /hour and £ =10 hours, in Figure 3 we graph ~log g of the system unreliability as
8 function of =laog,p of the mean time to handle a fault. When faults are handled
quickly ( in this case about 100 ms), we see that the reliability of the system
approaches that of a system with perfect coverage. When fault-handling is slow
(minutes or hours), imperfect coverage dramatically reduces the system's reliability.

4.2 An Approxzimate Solution of the 3-Component System

h When Markov models are used for realistic systems, the state space often grows
beyond practical limits. Accordingly, reliability evaluation packages often use various
aggregation or lumping methods to reduce the size of the state space. For example, a
system model can be decomposed into sub-models of fault-handling and fault-
occurrence behavior.16 Shgrt of assuming all faults are successfully handled, one of the
simplest approaches is to condense the second fault rate and fault-handling
perameters into a single constant ¢ denoting coverage, the probability that an

arbitrary fault is successfully handled. When this approach is used with our example,
we obtain the chain shown in Figure 4. Its state probability equations are

Pay(t) = e . (28)
Pa(t) = =3c,e”™™ 4+ 3,0~ (29)
Put) =3cicoe™™ ~6ccoe™® + 3c,cpe ™™ (30) . i;.'-;
Pp(t)= —c o™ 4 3c,cpe P —3c,coeM + 040y (31) i
Pp(t) = (2(1=ce)c) = (1~c,))e ™ = 3cy(1~co)e ™™ 4+ (1-c;) + c)(1-cy) (32)

As in the original chain,

R(t)= 1= (Pr(t) + Prt)) I
One interesting problem is correctly choosing values for the ¢ parameter. If two ¢
parameters were employed, as in our example, the instantaneous coverage

4
DA
approximation would usually be .._: . '_:..}
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1= Bws (33)
€= 1oy (3¢)

However, if only a single coverage parameter were chosen, the choice might well
_ depend on the period of time over which we were interested in evaluating the reliability
of the system.

With the reliability expressions for both the aggregated and original Markov
chains, we can evaluate the acceptability of the aggregation scheme by comparing the
t results they produce. Figure 4 shows the graphs of three estimates of ~log,g of system
unreliability as s function of log,p of £. With A fixed at 10~ failures/hr. for all three
curves, the lower curve is derived by solving the original Markov model in Figure 2 with
8 = 1. Using this & value, the middle curve is derived using the aggregated chain in

Figure 4 and instantaneous .coverage estimates derived from equations (33) and (34).
The upper curve is derived using a naive perfect coverage model, ie. fault handling is

assumed to always succeed instantaneously. Even for this contrived situation (A and &
are probably much closer in value than they would be in practice), we see that a
constant coverage assumption still can provide a good estimate of system reiiability.
For our particular example, if a more realistic § value is chosen, the reliability
estimates provided by the original and aggregated chains are essentially identical
Extending this validstion of a simple approximation scheme for a small mode! to more
realistic models may require significant effort.

Symbolic solutions of CTMC should provide at least two benefits. First, it should be
possible to compare the results obtained by exact and approximate solution methods
for small to medium sized CTMC. By indicating the magnitude of error that
approximate solutions introduce, this type of analysis should provide a good indication
of an mregaﬁon/approﬂmntion technique's utility for larger, more realistic
problems. Second, symbolic solutions allow us to easily examine the influence of

cbanging parameter values on the solutions of Markov models. This type of

.............................................................................................
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investigation could be very expensive using conventional simulation or numerical
solution techniques. By providing easy access to symbolic solutions of CTMC, the ACE
package should enhance our ability to study Markov reliability models. and -
approximation techniques for their solution. o
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Appendix - The ACE Procedure

GIVEN: An acyclic Markov chain with state space {1,2.....N] sorted so that the ancestors “

of a every state precede it in the list (for convenience).

BEGIN

FOR each state s€{1,2,....N}
Determine J(s) the set of states with transitions leading to s
Determine S(J(s)) and 1Ly (7) . 7€S(J(s))} using (9) and (15) .
Compute o,, k=0,..L(y), 7€S(/(i))
Let y* =g, and a,.p=0

o . e e 4

Note: ¥® for an absorbing state is 0. p ,:}4

FOR yeS(J(i)). y*r* .
POR k=0,1....L(7) ‘
Compute a;, using formula (17) T

2 -

o

Accumulate ayeg = a0 + (-1)**! - k!ﬁw

END FOR
END FOR
If y*€S(J(i)). compute 8, from (18) tor =0.....(7*) -

t LI .
. A ‘a ‘e o g

At 8

J
Pft)= T o lf a'yat®
yeS() k=0

END FOR
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Method: Simulation
Package: CAST!?
Note: Allows full simulation of a restricted class of systems
Method: Differential Equations (Numerical Solution)

Packsge: HARP®
Domain: Homogeneous and Non-Homeogeneous acyclic CTMC

Package: SAVE*
Domain: Cyclic CTMC
Method: Differential Equations (Laplace Solution)

Package: SURF!!
Domain: Non-Markov Processes
Note: Approximate solution using Coxian method of stages

Method: Integral Equations (Numerical Solution)

Package: Care Il Coverage Model?3
Domain: Semi-Markov Processes

Package: Care Il Reliability Model!d
Domain: Non-Homogeneous CTMC

Method: Closed Form Solution
Package: ARIES!8

Domain: Cyclic Homogeneous CTMC
Note: Poles and their coefficients derived numerically
Package: ACE

Domain: Acyclic Homogeneous CTMC
Note: Poles and their coefficients derived symbolically

Pigure 1: Reliability Modeling Packages Employing Markov Chain Techniques
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Pgure 2 Karkov Chain State Disgram for a S-Component Parallel Redundant System
Coverage failure results only from a second fault occurrence during reconfiguration
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Pgure 4: Aggregated Markov Chain State Diagram for 3-Component Parallel Redundant System
C, and C; are instanteous coverage estimates \
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Figure 5: Aggregation’s Effect on Reliability Estimates

The bottom curve is an estimste of relisbility derived from the original Markov chain.

The middle curve is derivéd from the sggregated chain in Figure 4

The Lop curve is a perfect coverage estimate
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